
Solute spreading in nonstationary flows in bounded, heterogeneous

unsaturated-saturated media

Zhiming Lu and Dongxiao Zhang

Hydrology, Geochemistry, and Geology Group (EES-6), Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Received 28 August 2001; revised 17 July 2002; accepted 17 July 2002; published 7 March 2003.

[1] It is commonly assumed in stochastic solute (advective) transport models that either
the velocity field is stationary (statistically homogeneous) or the mean flow is
unidirectional. In this study, using a Lagrangian approach, we develop a general stochastic
model for transport in variably saturated flow in randomly heterogeneous porous media.
The mean flow in the model is multidirectional, and the velocity field can be nonstationary
(with location-dependent statistics). The nonstationarity of the velocity field may be
caused by statistical nonhomogeneity of medium properties or complex boundary
configurations. The particle’s mean position is determined using the mean Lagrangian
velocity. Particle spreading (the displacement covariances) is expressed in terms of the
state transition matrix that satisfies a time-varying dynamic equation whose coefficient
matrix is the derivative of the mean Lagrangian velocity field. In the special cases of
stationary velocity fields the transition matrix becomes the identical matrix, and our model
reduces to the well-known model of Dagan [1984]. For nonstationary but unidirectional
flow fields our model reduces to that of Butera and Tanda [1999] and Sun and Zhang
[2000]. The validity of the transport model is examined by comparisons with Monte Carlo
simulations for the following three cases: transport in a mean gravity-dominated flow, in
an unsaturated flow with a water table boundary, and in a saturated-unsaturated flow. An
excellent agreement is found between our model results and those from Monte Carlo
simulations. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1869 Hydrology: Stochastic

processes; 1875 Hydrology: Unsaturated zone; 3220 Mathematical Geophysics: Nonlinear dynamics; 3230
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1. Introduction

[2] Solute transport in heterogeneous porous media has
received great attention in the last three decades. Many
stochastic models have been developed for fluid flow and
solute transport in the saturated zone [Gelhar and Axness,
1983; Dagan, 1984, 1989; Winter et al., 1984; Neuman et
al., 1987; Graham and McLaughlin, 1989; Rubin, 1990,
1997; Shvidler, 1993; Cushman and Ginn, 1993; Zhang and
Neuman, 1995; Kavvas and Karakas, 1996] and in the
unsaturated zone [Dagan and Bresler, 1979; Bresler and
Dagan, 1981; Jury, 1982; Jury et al., 1986; Simmons, 1982;
Polmann et al., 1991; Jury and Scotter, 1994; Harter and
Yeh, 1996a, 1996b].
[3] In most of these models it is commonly assumed that

medium properties (such as hydraulic conductivity) are
spatially stationary, or the mean flow field is uniform and/
or unidirectional. Russo [1993, 1995a, 1995b, 1998] pre-
sented a stochastic macrodispersion model for solute trans-
port in partially saturated, unbounded porous media based
on the stochastic flow theory of Yeh et al. [1985a, 1985b]. In
this model, the mean pressure head is assumed to be

constant, and the velocity field is spatially stationary. The
flow field considered is thus mean gravity-dominated. For
such a case, the displacement covariance expressions are in
agreement with those derived by Dagan [1984, 1989] for
saturated heterogeneous formations. It has been found that
in this case, the longitudinal displacement covariance X11

increases with travel time, and the rate of increase, reflected
as the longitudinal macrodispersion coefficient D11,
becomes constant at large time. The transverse displacement
covariance X22 increases at the early time and approaches
constant with time. Indelman and Rubin [1996] addressed
the problem of solute transport in nonstationary (statistically
nonhomogeneous) velocity fields due to a trending con-
ductivity of the porous medium and gave general equations
for the first two moments of the particle trajectory with a
unidirectional mean velocity. Butera and Tanda [1999]
derived explicit expressions for particle displacement cova-
riances for solute transport in unidirectional but nonuniform
mean flows; Destouni et al. [2001] made use of these
expressions in studying solute transport under uniform
recharge. Sun and Zhang [2000] investigated the effect of
a water table boundary on solute spreading in an unsatu-
rated porous medium. By first-order approximations they
derived statistical moments of particle displacement for the
special case of unidirectional but nonuniform mean flow.
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One of their results is that near the water table the longi-
tudinal displacement covariance decreases rather than
increases linearly at the large time as predicted by previous
models.
[4] Recently, Foussereau et al. [2001] studied transport

of nonreactive solutes through a coupled, two-dimensional
randomly heterogeneous unsaturated-saturated zone system
with temporally random rainfall using Monte Carlo simu-
lations and compared Monte Carlo simulation results with
the theoretical results of Destouni and Graham [1995]. In
the latter study, although the flow field is nonstationary, the
particle displacement covariance was approximated with the
modified version of the well-known displacement cova-
riance derived under stationary conditions [Destouni and
Graham, 1995, equation (18); Rubin and Bellin, 1994,
equation (17)]. As will be clear later in this paper, this
approximation may not be appropriate. In addition, in
Destouni and Graham’s [1995] model the coupling between
the unsaturated and saturated zones is not fully accounted
for in that the two flow regimes are solved separately, and
the mean flow in the unsaturated zone is set to be vertical
while that in the saturated zone is taken to be horizontal.
[5] In this study, we develop a general model to predict

the displacement covariance tensor for solute transport in a
nonstationary flow field, in which both the mean flow
direction and magnitude may vary in space. Flow non-
stationarity may be caused by nonstationary medium prop-
erties, complex flow configurations, or appropriate
boundary conditions (such as a water table boundary)
[Zhang, 2002]. We express the displacement covariance
tensor at any time t in terms of the initial displacement
covariance at t0, Lagrangian velocity covariance, and the
state transition matrix, the last of which depends on the
derivatives of the mean Lagrangian velocity with respect to
the particle path. The first two moments of the particle
displacement are then evaluated. The displacement cova-
riances in general have to be evaluated numerically. In the
case of uniform, unidirectional mean flow (e.g., mean
gravity-dominated flow), our expression reduces to the
well-known results of Dagan [1984]. Our model is in spirit
similar to that of Indelman and Rubin [1996]. However, our
work differs from the latter in the following two aspects: (1)
Indelman and Rubin’s main result [Indelman and Rubin,
1996, equation (16)] seems to be only valid for weak mean
flow nonuniformity while our model does not have this
restriction; (2) they only evaluated the special case of
unidirectional mean flow while our study looks at transport
in coupled unsaturated and saturated flow where the mean
flow direction and magnitude may vary significantly in
space. In the case of the unidirectional nonstationary flow
field, our expression reduces to those of Butera and Tanda
[1999] and Sun and Zhang [2000]. Three examples are
given to illustrate the applicability of our model: solute
transport in a mean gravity-dominated flow, in an unsatu-
rated flow with a water table boundary, and in a fully
coupled unsaturated-saturated flow. Our results are com-
pared with Monte Carlo simulation results and an excellent
agreement is found between our model results and those
from Monte Carlo simulations. We also compared our
results against those obtained using Dagan’s [1989] expres-
sion for the case of saturated-unsaturated flow. It is shown
that the results based on the approach presented in our work

are in much better agreement with Monte Carlo simulation
results.

2. Mathematical Development

[6] We consider transport of inert solutes in a transient
flow in unsaturated-saturated media satisfying the following
continuity equation and Darcy’s law:

SsH yð Þ þ H �yð ÞC y; �½ �f g @y x; tð Þ
@t

þr � q x; tð Þ ¼ g x; tð Þ ð1Þ

qi x; tð Þ ¼ �K y; �½ � @

@xi
y x; tð Þ þ x1½ � ð2Þ

subject to initial and boundary conditions

y x; 0ð Þ ¼ �0 xð Þ x 2 � ð3Þ

y x; tð Þ ¼ � x; tð Þ; x 2 �D ð4Þ

q X; tð Þ � n xð Þ ¼ Q x; tð Þ; x 2 �N ð5Þ

where q is the specific discharge, y + x1 is the total head, y is
the pressure head, i = 1, � � �, d (where d is the number of
space dimensions), �0(x) is the initial pressure head in the
domain �, �(x, t) is the prescribed head-on Dirichlet
boundary segments �D, Q(x, t) is the prescribed flux across
Neumann boundary segments �N, n(x) = (n1, � � �, nd)T is an
outward unit vector normal to the boundary, H(y) is the
Heaviside step function, being zero wheny < 0 and one when
y  0, Ss is the specific storage, C[y, �] = dqe/dy is the
specific moisture capacity, qe � qe[y, �] is the effective
volumetric water content at x, which depends on y and soil
properties when y < 0 and becomes the saturated water
content qs when y  0, and K[y, �] is the unsaturated
hydraulic conductivity (assumed to be isotropic locally).
Both C and K are functions of pressure head and soil
properties at x. The elevation x1 is directed vertically upward.
In these coordinates, recharge has a negative sign. When the
flow is unsaturated, it is required to adopt some model to
describe the constitutive relationships of K versus y and qe
versus y. Although the Brooks-Corey model may have
certain mathematical advantages over the Gardner-Russo
model [Gardner, 1958; Russo, 1988] in low-order stochastic
analyses [Zhang et al., 1998], we use the latter for simplicity:

K x; tð Þ ¼ Ks xð Þ exp a xð Þy x; tð Þ½ � ð6Þ

qe x; tð Þ ¼ qs � qrð Þ exp 0:5a xð Þy x; tð Þ½ �f

� 1� 0:5a xð Þy x; tð Þ½ �g2= mþ2ð Þ ð7Þ

where y � 0. A stochastic model of variably saturated flow
on the basis of van Genuchten-Mualem constitutive relation-
ship [van Genuchten, 1980] has been developed by Lu and
Zhang [2002]. In equations (6)–(7), a is the soil parameter
related to the pore size distribution,m is a parameter related to
tortuosity (taken to be known), qr is the residual (irreducible)
water content, and qs is the saturated water content. The
variabilities of qs and qr are likely to be small compared to that
of the effective water content qe [Russo and Bouton, 1992]. It
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is assumed that qs, qr, andm are deterministic constants while
the soil parameter a(x) and the log transformed saturated
hydraulic conductivity f (x) = ln Ks(x) are treated as random
space functions. We also allow spatial variability and/or
randomness in the initial and boundary terms �0(x), �(x, t),
and Q(x, t), and in the source/sink term g(x, t). They are
generally treated as (spatially and/or temporally) nonsta-
tionary random space functions (random fields). Thus the
expected values may be space- and time-dependent and the
covariances may depend on the actual points in space-time
rather than only on their space-time lags.
[7] When the soil properties f (x) and a(x), the initial/

boundary conditions �0(x), �(x, t), and Q(x, t), and/or the
source/sink terms g(x, t) are treated as random functions, the
governing equations (1)–(5) become a set of stochastic
partial differential equations whose solutions are no longer
deterministic values but probability distributions or related
quantities such as statistical moments of the dependent
variables. These equations have been derived analytically
and solved numerically by Zhang and Lu [2002].
[8] The seepage (Eulerian) velocity at x is related to the

specific flux qi by

ui x; tð Þ ¼ qi x; tð Þ
qe x; tð Þ : ð8Þ

[9] For a particle originating from location a at t = t0, its
trajectory is described by the following kinetic equation:

dX t; a; t0ð Þ
dt

¼ V X t; a; t0ð Þ½ � ð9Þ

with the initial condition X(t0; a, t0) = a, where X(t; a, t0)
stands for the particle position at time t and V[X(t; a, t0)]
denotes the (Lagrangian) velocity of the particle. It should be
emphasized that even if in the case that the flow field is steady
state, the particle (Lagrangian) velocity V[X(t; a, t0)] may
still be time-dependent if the (Eulerian) flow field is spatially
nonstationary, which may be caused by, for example, non-
stationarity of soil properties or appropriate boundary con-
ditions (such as a water table boundary) [Zhang, 2002].
[10] When the Eulerian velocity ui(X, t) is treated as a

random space function, so should the particle velocity and the
particle position. Let us denote X(t; a, t0) as Xt when there is
no confusion. We may decompose the Eulerian velocity
ui(X, t) and the particle positionXt into their respective mean
and fluctuation: ui(X, t) = hui(X,t)i + u0i(X, t), andXt = hXti +
X0

t. With Taylor expansion we may expand the Lagrangian
velocity V(Xt) at the mean position hXti as

V Xtð Þ ¼ V hXtið Þ þ X0
t � r

� �
V hXtið Þ

þ 1

2
X0

t � r
� �2

V hXtið Þ þ � � � : ð10Þ

Substituting (10) into (9) and collecting terms at zeroth- and
first-order leads to

dhXti
dt

¼ hV hXtið Þi; ð11Þ

dX0
t

dt
¼ V0 hXtið Þ þ X0

t � r
� �

hV hXtið Þi ð12Þ

with the initial conditions hXti = a and X0
t = X0

0 at t = t0.

[11] Equation (12) can be rewritten as

dX 0
t;i

dt
¼ V 0

i hXtið Þ þ Bij tð ÞX 0
t;j; ð13Þ

where i, j = 1,� � �, d, and

Bij tð Þ ¼
@hVi Xtð Þi

@Xt;j

����
Xt¼hXti

: ð14Þ

Summation for repeated indices in (13) is implied. Indelman
and Rubin [1996] and Sun and Zhang [2000] derived (13)
and considered some special cases of unidirectional flows
on the basis of it. Indelman and Rubin [1996] expressed X0

t,i

in an integral form similar to

X 0
t;i ¼

Z t

t0

V 0
i hXtið Þdtþ

Z t

t0

Bij tð ÞX 0
t;jdt: ð15Þ

It is seen that the right-hand-side of (15) has the term X0
t,j.

Substituting of (15) into its right-hand-side leads to

X 0
t;i ¼

Z t

t0

V 0
i hXtið Þdtþ

Z t

t0

Z t

t0

Bij tð Þ

� V 0
j hXt0 ið Þ þ Bjl t0ð ÞX 0

t0;l

h i
dt0dt: ð16Þ

Theoretically, (15) or (16) is not closed without an infinite
number of substitutions. Indelman and Rubin [1996, equa-
tion (16)] stopped this process by neglecting the last term in
(16) without an explicit justification. It seems that the
resulting approximation should be valid when Bij(t) is small.
Sun and Zhang [2000, equation (10)] were able to represent
X0
t,i of (13) in an exact integral form in terms of an

exponential term for the case of unidirectional nonstationary
mean flow. It can be shown that the result of Indelman and
Rubin [1996, equation (16)] is recovered by keeping only
the first two terms of the Taylor expansion of the exponen-
tial integral in (10) of Sun and Zhang [2000]. For the case of
Bij(t) � 0, (15) reduces to the well-known expression for
uniform mean flow [e.g., Dagan, 1989].
[12] In this study, we consider the general case of solute

spreading in a spatially nonstationary flow field, where the
mean flow may vary spatially in both magnitude and
direction. For such a general case, explicit analytical
expressions for X0

t,i are not possible. Hence, we derive the
second moments of Xt,i on the basis of the general expres-
sion (13). Equation (13) can be rewritten in a matrix form as

dX0
t

dt
¼ V0ðhXtiÞ þ XB tð ÞX0

t ð17Þ

where X0
t = (X0

t,1, � � �, X0
t,d)

T, V0 = (V0
1, � � �, V0

d)
T, and B =

(Bij)d � d. This equation has a unique solution [Appendix A],

X0
t ¼ � t; t0ð ÞX0

0 þ
Z t

t0

�ðt; tÞV0 hXtið Þdt ð18Þ

where X0
0 = X0

t0 is the initial condition for X
0, and the d � d

matrix �(t, t0) is called the state transition matrix

LU AND ZHANG: SOLUTE TRANSPORT IN NONSTATIONARY FLOWS SBH 2 - 3



(or fundamental matrix) which satisfies the homogeneous
equation

d� t; t0ð Þ
dt

¼ B tð Þ� t; t0ð Þ ð19Þ

with initial condition �(t0, t0) = E, where E is the identity
matrix. The solution of (19) can be expressed as the Peano-
Baker series [Antsaklis and Michel, 1997],

� t; tð Þ ¼ E þ
Z t

t
B t0ð Þdt0 þ

Z t

t
B t0ð Þ

Z t0

t
B t1ð Þdt1dt0

þ
Z t

t
B t0ð Þ

Z t0

t
B t1ð Þ

Z t1

t
B t2ð Þdt2dt1dt0 þ � � � :

ð20Þ

It should be noted that (18) is an exact solution for (17). By
retaining the first two terms in the right-hand side of (20),
our solution (18) reduced to (16) of Indelman and Rubin
[1996]. Another advantage of solution (18) is that �(t, t) is
independent of initial displacement perturbation X0

0 at t0 and
the driving force term V0(hXti); therefore �(t,t) calculated
for a mean flow field can be used for different displacement
perturbation X0

0 and different degree of heterogeneity of the
porous medium. This may be useful in model calibration and
inverse problems.
[13] Multiplying (18) by itself in terms of t0 and using (A3)

yields the first-order displacement (cross-) covariance tensor

hX0
tX

0T
t0 i ¼ � t; t0ð ÞhX0

0X
0T
0 i�T t0; t0ð Þ

þ
Z t0

t0

� t; t0ð ÞhX0
0V

0T hXt0 ið Þi�T t0; t0ð Þdt0

þ
Z t

t0

� t; tð ÞhV0 hXtið ÞX0T
0 i�

T t0; t0ð Þdt

þ
Z t

t0

Z t0

t0

� t; tð ÞhV0 hXtið ÞV0T hXt0 ið Þi�T t0; t0ð Þdt0dt:

ð21Þ

It should be pointed out that the cross covariance between the
initial displacement and velocity perturbation hX0

0V
0T(hXti)i

may not be zero if the particle is released before time t0. If the
displacement perturbation at the initial state X0

0 � 0, for
instance at the time of a known release (t0 � 0), (21)
simplifies to

hX0
tX

0T
t0 i ¼

Z t

t0

Z t0

t0

� t; tð ÞhV0 hXtið ÞV0T hXt0 ið Þi�T t0; t0ð Þdt0dt

ð22Þ
or in its component form

hX 0
t;iX

0
t0;ji¼

Z t

t0

Z t0

t0

�ik t; tð Þ�jl t
0; t0ð ÞhV 0

k hXtið ÞV 0
l hXt0 ið Þidtdt0:

ð23Þ
By setting t0 = t in (23) we obtain the displacement
(cross-)covariance Xij

Xij tð Þ ¼ hX 0
t;iX

0
t;ji ¼

Z t

t0

Z t

t0

�ik t; tð Þ�jl t; t0ð Þ

� hV 0
k hXtið ÞV 0

l hXt0 ið Þidtdt0: ð24Þ

Because hV0
i(hXti)V0

i(hXt0i)i is a covariance function for all
i, it can be shown mathematically that Xii is a positive

quantity for all i. Though hX0
t,iX

0
t0, ji is asymmetric with

respect to indices i and j unless t � t0, the tensor X is
symmetric, i.e., Xij(t) � Xji(t) for all i and j.
[14] The dispersion coefficient Dij(t) may be derived by

taking the derivative of Xij(t) with respect to t, and noticing
that d � ij(t, t)/dt = Bim(t) �mj(t, t) and � ij(t, t) = dij

2Dij tð Þ ¼
dhX 0

t;iX
0
t;ji

dt
¼

Z t

t0

�ik t; tð ÞhV 0
k tð ÞV 0

j tð Þidt

þ
Z t

t0

�jl t; t0ð ÞhV 0
i tð ÞV 0

l t0ð Þidt0

þ
Z t

t0

Z t

t0

Bim tð Þ�mk t; tð Þ�jl t; t0ð Þ
�

þ Bjn tð Þ�ik t; tð Þ�nl t; t0ð Þ
�
hV 0

k tð ÞV 0
l t0ð Þidtdt0 ð25Þ

where V0
i(t) = V0

i(hXti) for simplicity.
[15] If the velocity field is nonstationary but the mean

flow is unidirectional, for example, vertical infiltration
toward the water table in a stationary porous medium, the
only nonzero term in the B(t) matrix is B11(t), the derivative
of longitudinal mean velocity with respect to the longitudi-
nal coordinate. In this case, (19) has the solution �(t, t0) =
exp(

R
t0

tB(t)dt), thus (24) reduces to (10)–(14) of Sun and
Zhang [2000]:

Xij tð Þ ¼
Z t

t0

Z t

t0

hV 0
i hXtið ÞV 0

j hXt0 ið Þi exp

�
Z t

t
B1i t

0ð Þdi1dt0



þ
Z t

t0
B1j t

00ð Þdj1dt00
�
dtdt0 ð26Þ

where the mean velocity direction is aligned with x1. Note
that in (26) the term exp

R t

t B1i t
0ð Þdt0

�
can be explicitly

expressed as hV1(hXti)i/hV1(hXti)i. For the case of constant
Bij, for example, saturated horizontal flow with constant
vertical recharge as studied by Butera and Tanda [1999],
equation (26) can be further reduced to (26)–(27) of Butera
and Tanda [1999]. In the special case of Bij � 0, i.e.,
uniform mean velocity field, (19) has the solution �(t, t) �
E for any t and t, thus (24) and (25) simplify to

hX 0
t;iX

0
t0 ;ji ¼

Z t

t0

Z t0

t0

hV 0
i tð ÞV 0

j t0ð Þidtdt0 ð27Þ

and

2Dij tð Þ ¼
Z t

t0

hV 0
i tð ÞV 0

j tð Þidtþ
Z t

t0

hV 0
i tð ÞV 0

j t0ð Þidt0: ð28Þ

It should be noted that two integrands in (28) are usually not
the same unless the velocity covariance is stationary. In the
case that the Lagrangian mean velocity is uniform in some
direction i0, for instance, in the transverse direction of the
mean gravity-dominated flow, hVi0(hXit)i = const, thus
Bi0

j(t) � 0 for all j and t  0, and �i0
j(t, t) = di0 j for all

j and t, t  0. In this case, the displacement covariance Xi0i0

and the dispersion coefficient Di0i0
in this direction can be

calculated using (27) and (28).
[16] Although the first-order particle displacement cova-

riance (27) was originally derived for stationary flow fields
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[Dagan, 1984, 1989], it has been used for transport in
nonstationary flows. For example, Zhang and Neuman
[1995] employed a similar formula in their study of solute
transport in nonstationary flow fields caused by condition-
ing on measurements; Rubin and Bellin [1994] and Des-
touni and Graham [1995] made use of (27) for transport in
unidirectional but nonuniform mean flow due to recharge. It
is seen from (24) and (26) that when the mean flow is not
uniform, a straightforward application of (27) is not appro-
priate. Instead, (26) should be used if the mean flow is
unidirectional as in the cases studied by Rubin and Bellin
[1994] and Destouni and Graham [1995]; (24) should be
employed if the flow field is generally nonstationary as in
the case of Zhang and Neuman [1995]. The goodness of
using (27) to approximate (24) or (26) depends on the
magnitude of Bij(t). When Bij(t) is negligible, (27) should be
able to provide a good approximation for (24) or (26).
However, as found by Sun and Zhang [2000, Figure 2] in
the case of vertical infiltration, excluding the contribution of
B11(t) in (26) (i.e., using (27)) induces a significant error
when the solute is near the water table where B11 is not
negligible. Similar results have been obtained by Butera
and Tanda [1999] for saturated horizontal flow with con-
stant recharge. The significant effect of flow nonstationarity
is further verified in one of our examples for a coupled
saturated-unsaturated flow. The results from the expression
for displacement covariances, i.e., equation (24), are com-
pared against those computed using Dagan’s expression,
i.e., equation (27). It is shown that our results are in much
better agreement with Monte Carlo results than are those
from the simpler model.

3. Numerical Implementation

[17] For a given nonstationary saturated-unsaturated
porous medium, the first-order Eulerian velocity field and
its covariance may be computed using the algorithm devel-
oped by Zhang and Lu [2002]. For a particle released at
location X0 at time t = 0, the first-order Lagrangian velocity
field and its covariance can be derived based on the first-
order mean Eulerian velocity field and velocity covariances.
The mean trajectory is obtained by solving (11), and the
derivatives of the first-order Lagrangian velocity field with
respect to the mean trajectory (along the particle path),
Bij(t), are then calculated.
[18] To compute the second moments Xij(t) = hX0

t,iX
0
t,ji,

one needs to solve for �(t, t), where t � t (note that �(t, t)
= ��1(t, t)). Because there is no simple analytical expres-
sion for �(t, t) (unless B is time-invariant or diagonal,
which yields the respective result of �(t, t) = exp[B(t � t)]
or �(t, t) = exp[

R
t
tB(t0)dt0]), �(t, t) and thus the moment Xij

have to be evaluated numerically. Several methods have
been proposed for evaluating �(t, t) for applications in
other fields. One approach is based on (20). This approach,
however, is computationally expensive, because a large
number of integrations has to be carried out to obtain
�(t, t) for each pair of t and t. Brogan [1991] proposes
an alternative algorithm to estimate �(t, t) based on (19). In
this study, we adopted and modified Brogan’s approach.
1. Set ta = t. Let td be a given small time increment. Set

tb = ta.
2. Compute f ¼ d� t; tað Þ

dt

����
t¼tb

¼ B tbð Þ� tb; tað Þ.
3. Estimate �(tb + td, ta) = �(tb, ta) + tdf.

4. If tb + td < t then let tb = tb + td and repeat steps 2
through 4; if tb < t < tb + td, set tb = t and repeat steps 2
through 4.
5. If tb  t, set a new pair of t and t and start from step 1.
[19] If the Eulerian velocity field changes rapidly in time

and/or space, which means that the Lagrangian velocity
may change rapidly in time, thus Bij(t) might be relatively
large. It may be necessary in this case to change steps 2 and
3 to include the second-order term in the Taylor’s expansion
of �(t, t):
For step 2, compute f ¼ tdB tbð Þ� tb; tað Þ þ 1

2
t2d

dB tð Þ
dt

���
t¼tb

þB2 tbð Þ

 �

� tb; tað Þ.
For step 3, estimate �(tb + td, ta) = �(tb, ta) + f.
[20] The accuracy of the calculated � (t, t) value depends

on the increment td. Certainly, higher accuracy requires a
larger computation effort for each pair of t and t. However,
the number of required pairs of t and t could be reduced
dramatically by using properties of �(t, t). Suppose we are
going to calculate the covariance hX0

t,i X
0
t,ji at time tk = t0 +

k�T, k = 1, 2, . . ., K. The numerical integration involves
evaluation of � (tk, tj) for k = 1, 2, . . ., K and j � k. In this
case, in fact, we only need to compute �(tk, tk�1), k = 1, 2,
. . ., K, using the algorithm described above, because all
other terms �(tk, tk�l) for k = 1, 2, � � �, K and l = 2, 3, � � �, k
can be calculated by utilizing a property of �(t, t), i.e., (A3)

� tk ; tk�lð Þ ¼ � tk ; tk�1ð Þ� tk�1; tk�lð Þ ¼
Yl
i¼1

� tk�iþ1; tk�ið Þ

k ¼ 1;K; l ¼ 2; k: ð29Þ

Once we have �(tk, tl) for all i = 1, 2, . . ., K and l = 1, 2, . . .,
k, the second moments Xij can be calculated using numerical
integration. The dispersion coefficient Dij(t) can be eval-
uated either by using (25) or by taking the derivative of the
second moments Xij(t) with respect to t.

4. Illustrative Examples

[21] In this section, we attempt to examine the validity of
the developed model to transport of nonreactive solute in
hypothetical saturated-unsaturated soils, by comparing
model results with those from Monte Carlo simulations.
For simplicity, it is assumed in the following examples that
the log saturated hydraulic conductivity f (x) = lnKs(x) and
the pore size distribution parameter a are second-order
stationary with an exponential covariance function

Cp hð Þ ¼ s2p exp � hj j=lp

� �
ð30Þ

where p = f or a, sp
2 is the variance of p, lp is the correlation

scale of p, and h is the separation vector. It is also assumed
that f and a are uncorrelated.
[22] We consider a rectangle grid of 20 � 60 square

elements in a vertical cross-section having a width L2 = 120
cm and a height L1 = 360 cm. Thus the size of each element
is 6.0 cm by 6.0 cm. The input parameters are given as h f i =
0.0 (i.e., the geometric mean of the saturated hydraulic
conductivity KG = 1.0 cm/T ), sf

2 = 0.2, hai = 0.05 cm�1,
sa
2 = 1.0 � 10�4 cm�2, lf = la = 30 cm, qs = 0.3, qr = 0.0,

and an infiltration rate of Q = �0.04 cm/T (where T is any
time unit, as long as it is consistent with the time unit in
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KG). In terms of coefficients of variation, the variabilities of
Ks and a are CVKs = sKs/hKsi = 44.7% and CVa = sa/hai =
20.0%, respectively.
[23] We design three cases to test our model. For each

case, we conduct Monte Carlo simulations and compare
results against those from our stochastic model. We first
generate 10,000 two-dimensional 20 � 60 unconditional
Gaussian realizations with a zero mean, a unit variance, and
a correlation length l = 30 cm, using a sequential Gaussian
random field generator sgsim from GSLIB [Deutsch and
Journel, 1998]. The quality of these Gaussian random fields
is checked first by comparing the sample mean and variance
of these unconditional realizations with the specified zero
mean and unit variance. The sample variogram calculated
from generated realizations is then compared with the
analytical exponential model (30). These comparisons indi-
cate that the generated Gaussian realizations reproduce the
specified mean, variance, and correlation length very well.
These zero mean, unit variance realizations are then scaled
to obtain realizations with the specified means and variances
for f and a.
[24] For each simulation (with one realization for f and

a each), a nonreactive particle is placed at a given point
in the flow domain. If the flow solution for this simu-
lation converges, the position of the particle at any given
time can be determined from the Lagrangian velocity
field, which is converted from the Eulerian velocity field.
We record the particle’s position at some given times
until the particle leaves the domain. If the flow solution
does not converge due to the variations in the f and a
fields, the simulation is ignored and the two particular
realizations of f and a for this simulation are skipped.
Excluding some realizations may change the degree of
heterogeneity and the spatial structure of the f and a
fields because those discarded are most likely the realiza-
tions with large contrasts in f and a fields [Zhang and
Lu, 2002]. In turn, there may exist a discrepancy between
the flow moments from the Monte Carlo simulations and
the stochastic flow moment approach of Zhang and Lu
[2002]. In our examples, we use the sample mean
velocity field and sample velocity covariances calculated
from Monte Carlo simulations as the input Eulerian mean
velocity field and velocity covariances to the first-order
stochastic transport model. We do so to ensure that the
stochastic transport model and the Monte Carlo transport
simulations have the same underlying flow field and are
thus compatible. Therefore the causes for any difference
between the two sets of results would be the truncation
errors in neglecting higher-order terms in the first-order
stochastic transport model, the numerical errors associated
with approximating the first-order expressions and with
particle tracking in the Monte Carlo simulations, and the
statistical sampling errors occurred in the Monte Carlo
simulations.
[25] The particle’s mean position and spreading at any

given time are then calculated using particle’s positions at
that time from all Monte Carlo simulations. Because the
particle may leave the flow domain earlier in some Monte
Carlo simulations than in others, we calculate the particle’s
mean position and spreading only up to the maximum time
at which the particle remains within the flow domain for all
simulations.

[26] In our first example, denoted as case 1, we consider
solute transport in a mean gravity-dominated flow. The
boundary conditions are specified as follows: no-flow at
two vertical boundaries (x2 = 0.0 and x2 = 120 cm), a
constant deterministic flux Q = �0.04 cm/T (a negative
value means infiltration) at the top (x1 = 360 cm), constant
pressure head y0 = �61.915 cm at the bottom, where y0 is
determined from the infiltration rate Q and the specified
h f i, sf2, and hai using the formula Q = �K = �exp(h f i +
sf
2/2) exp(haiy0).
[27] In the second example (case 2), the boundary con-

ditions are similar to those in case 1, except that the bottom
is the water table (y0 = 0.0). The third example (case 3) is
solute transport in a coupled unsaturated-saturated flow
system. The boundary conditions are given as: no-flow at
the bottom (x1 = 0.0), a constant deterministic flux Q =
�0.04 cm/T at the top (x1 = 360 cm), constant total heads
H = 60 cm and H = 54 cm at the lower portion (x1 � 60 cm)
of the left side and the lower portion (x1 � 54 cm) of the
right side, respectively, and no-flow at the upper portion of
the left and right sides. Under the given conditions, the
upper portion of the flow domain is unsaturated while
the lower portion is saturated with a horizontal flow from
the left to the right. All boundary conditions for three cases
are deterministic.

5. Results and Discussions

5.1. Nonstationarity of Velocity Fields

[28] Monte Carlo simulations have been conducted for
each case. The mean flow for these cases derived from
Monte Carlo simulations are depicted in Figure 1, where the
arrowed curves stand for streamlines, the solid curves
represent contours for the vertical component of the mean
velocity, and the dotted ones are contours for the horizontal
component of the mean velocity. A particle is released at
(x1 = 350 cm and x2 = 60 cm) in cases 1 and 2, while it is
released at (x1 = 350 cm and x2 = 30 cm) in case 3. The
circles on streamlines stand for the mean position of the
particle at different times (40 T between two adjacent
circles).
[29] For the mean gravity-dominated flow (Figure 1a)

because the mean pressure head y is constant (=�61.915
cm) over the entire domain and the f and a fields are by
assumption statistically homogeneous, the effective mois-
ture content and thus the mean velocity are constant. The
particle moves downward at a constant rate. In the case of
the water table boundary at the bottom (case 2), though the
mean flux is the same over the entire flow domain, the mean
velocity is a function of depth, due to the fact that close to
the water table the effective moisture content increases.
Toward the water table, the distance between two adjacent
circles becomes smaller (Figure 1b), which implies that the
particle is decelerated.
[30] For the case of flow in a saturated-unsaturated porous

medium (case 3), in the upper portion of the domain the mean
velocity is a constant and the flow is downward driven by
gravity. Near the water table, the flow changes its direction
and tends to merge into the flow in the saturated zone. Similar
to that in case 2, toward the water table, the particle decel-
erated but it accelerates after it crosses the water table due to a
large horizontal flux component in the saturated zone.
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[31] The particle positions at some elapsed times are
shown in Figure 2, where points with different colors
represent different elapsed times, and each point stands
for the particle position at a particular elapsed time in a
single realization of the Monte Carlo simulations. Some
observations may be made from the particle plumes. At the
early time of t = 100 T, the plumes are almost the same for
the three cases; at t = 500 T, the plumes for cases 1 and 2 are
similar while the plume for case 3 is narrower in the
horizontal direction. At t = 1000 T, the plume for case 1
is somewhat wider than that for case 2 in both directions,
and the plume for case 3 lags behind the other two plumes
and is significantly narrower. At t = 1500 T, parts of the
plumes for cases 1 and 2 have reached and exit the bottom
boundaries; the plume for case 3 passes the water table into
the saturated zone, changes its direction, and becomes
highly distorted. After the plume passes the water table it
becomes mainly horizontal.
[32] The sample Eulerian mean velocity field and sample

velocity covariances calculated from Monte Carlo simula-
tions are converted, based on the position at which the
particle is released, to the Lagrangian mean velocity field
and the corresponding velocity covariances, which are used
in our stochastic model. It should be pointed out that though
both f and a are assumed to be stationary, the velocity
covariance is nonstationary in all these cases. Figure 3
illustrates covariances of the Lagrangian velocity fields for
the cases. For each case the longitudinal and transverse
Lagrangian velocity covariances Cu1u1

and Cu2u2
with respect

to two reference points (times), one being t0 at which the
particle is released and the other being tn, which is the

maximum time before the particle exits the flow domain, are
plotted against the separation time lag (or separation dis-
tance). In the case of the mean gravity-dominated flow, if
the domain is unbounded and the field is stationary, the
longitudinal velocity covariance should be stationary with
an exponential model having a finite integral scale, and the
transverse velocity covariance should follow a hole-type
function with a zero integral scale [Russo, 1993].
[33] However, the presence of boundaries causes the

velocity covariances to be nonstationary in that the velocity
covariance between any two points depends on actual
locations of these points rather than only their space or
time lags. Figure 3a shows that there is a big difference
between the covariances Cu1

u1 with respect to the two
reference points. Because the reference point tn corresponds
to a location close to the bottom boundary, the transverse
velocity covariance Cu2

u2(tn, ti) is close to zero, owing to the
specific boundary condition at the bottom. For the case with
the water table at the bottom (Figure 3b) the velocity
covariance Cu1

u1 with respect to the reference time t0, which
corresponds to the starting point (350, 60), is close to an
exponential model, while the corresponding Cu2

u2 appears
to be a hole-type function. Again, the velocity covariances
are not stationary as the velocity covariances with respect to
tn are significantly different from their counterparts at t0.
Because the velocity covariance plays an important role in
calculation of the displacement covariance Xij, the existing
stochastic transport models based on the assumption of
stationary velocity covariances may not be adequate for
simulating solute transport in the unsaturated zone. For case
3 of the coupled unsaturated-saturated flow, the velocity

Figure 1. Mean flow and streamlines for three cases: (a) mean gravity-dominated flow (case 1); (b) a
water table at the bottom (case 2); (c) unsaturated-saturated flow (case 3).
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covariances are even more location dependent. The refer-
ence time t0 corresponds to a point in the mean gravity-
dominated unsaturated flow regime, where the flow is
predominantly vertical, whereas the reference time tn cor-
responds to a point near the right-hand side boundary in the
saturated zone, where the mean flow is mainly horizontal.
Hence, the velocity covariance components Cu1u1

and Cu2u2

switch their roles at the two times (Figure 3c). Between
these two times, the mean flow, and thus the mean particle
path line, changes direction, especially near the interface of
the two flow regimes.

5.2. Statistical Moments of Particles

[34] Comparisons between the particle moments from the
stochastic model and the Monte Carlo simulations are
illustrated in Figures 4–6, where the Figures 4a, 5a, and
6a are for comparison of the mean position, and Figures 4b,
5b, and 6b for comparison of displacement covariance. The
curves for Monte Carlo simulation results are shorter than
those for our stochastic modeling results because for the
former, once the particle in one simulation leaves the flow
domain at a certain time, we are not able to compute the
sample mean position and displacement covariance there-
after. Figures 4–6 indicate that there is an excellent
agreement between Monte Carlo simulation results and
the first-order stochastic transport model results for the
cases of given f and a variabilities and specific flow
configurations. It is expected that the agreement between
the two approaches should deteriorate as the level of
variabilities increases. Although the examples shown in this
study do not reveal the validity range of the first-order

stochastic transport model, they serve the purpose to dem-
onstrate that the first-order transport model correctly cap-
tures the effects of flow nonstationarity on solute spreading.
[35] It is interesting to see the behavior of the mean

trajectory and the displacement covariances X11 and X22

over time for different flow scenarios. Figure 4a shows
changes of the mean particle position over time for the mean
gravity-dominated flow. Linear vertical and constant hori-
zontal components of the mean trajectory indicate that the
particle moves downward at a constant rate. The spreading
in the longitudinal (vertical) direction, X11, is always
increasing over time (Figure 4b), while in the transverse
(horizontal) direction, the spreading increases at the early
time and remains more or less constant, except at late times
when the boundary effects become effective.
[36] As mentioned before, the flow of this case would

be stationary if it was without boundary effects. Under the
condition of stationary, mean gravity-dominated flow, the
particle displacement covariances have been well studied
[e.g., Russo, 1993, 1995a, 1995b, 1998; Harter and
Zhang, 1999]. For the case with the water table at the
bottom, a constant hX2i means that the particle moves
downward (Figure 5a). At the early time, the plot of hX1i
over time is a straight line, similar to the case of the mean
gravity-dominated flow. When the particle approaches the
water table, the slope of the hX1i curve decreases, indicat-
ing that near the water table the particle decelerates, which
causes the displacement covariance X11 to decrease at the
late time (Figure 5b). It should be noted that both X11 and
X22 decrease at the late time, that is, near the water table,
the distribution of particles shrinks in both longitudinal

Figure 2. Particle positions at different elapsed times obtained from Monte Carlo simulations: (a) case
1; (b) case 2; (c) case 3.
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and transverse directions (also see Figure 2b). The
decrease in X11 near the water table has been observed
by Sun and Zhang [2000] for transport in unidimensional
flow. The finding is also consistent with the observation
of Russo [1993] for the mean gravity-dominated flow that
both longitudinal and transverse displacement covariance
decrease as the water saturation increases. The time at
which both X11 and X22 start to decrease depends on soil
properties. In general, if the pore size parameter a is
large, the mean gravity-dominated regime will be longer,
and the impact of the water table boundary on Xii will be
smaller.
[37] For the case of flow in a saturated-unsaturated

porous medium (case 3), at early times (t � 800 T ) the
plot of hX1(t)i is a straight line and the displacement
covariances X11 and X22 increase with time, which indicates
that the mean flow is gravity driven in the upper portion of
the domain. Thereafter, the decrease in the slope of the hX1i
curve again corresponds to the decrease of the vertical
(Eulerian) velocity component near the water table (Figure
6a). After the particle crosses the water table, it moves much
faster in the horizontal direction than in the vertical direc-
tion (Figure 6a). The horizontal particle displacement cova-
riance increases rapidly while the vertical counterpart
decreases.
[38] The effect of flow nonstationarity on displacement

covariances for the case with a water table boundary has
been studied by Sun and Zhang [2000]. For the coupled
saturated-unsaturated flow, the effect of flow nonstationar-
ity is also significant, as shown in Figure 6b, where
displacement covariances resulted from our model, i.e.,
equation (24), are compared with both Monte Carlo results
and those from Dagan’s expression, i.e, equation (27).
Figure 6b shows that results from our model are in much
better agreement with Monte Carlo results than are those
obtained by ignoring the effect of flow nonstationarity, i.e,
Dagan’s expression. More specifically, for a particle ini-
tiated in the unsaturated zone, displacement covariance X11

increases with time, and as the particle approaches to the
water table X11 starts to decrease, as predicted by our
model and verified by Monte Carlo simulation, while it

Figure 3. Lagrangian velocity covariances between points
along the mean particle path and two reference points, one
at which the particle is released and the other at which the
particle exits the domain, for all three cases.

Figure 4. Comparison of the mean position and displacement covariances between Monte Carlo results
(MC) and first-order stochastic model results (ME) for the mean gravity-dominated flow.
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will continue to increase if the effect of flow nonstatio-
narity is ignored. After passing through the water table, the
displacement covariance X22 increases quickly in both our
model and Monte Carlo simulation, while such increase is
delayed if the effect of nonstationarity in mean flow is
ignored.
[39] The mixed term of the displacement covariance

tensor, X12, for all three cases is illustrated in Figure 7.
Figure 7 shows that for each case X12 calculated from
Monte Carlo simulations and that from our model are in
good agreement. In addition, for cases 1 and 2, comparing
to their corresponding longitudinal displacement cova-
riance X11, the mixed term X12 is very small due to limited
transverse flux in both cases. Small X12 also implies that
the solute plume moves unidirectionally and does not have
a significant rotation. However, for case 3, both Monte
Carlo results and our model results show that X12(t) is
relatively large, which indicates a significant plume rota-
tion and distortion. It should be noted that when the plume
is highly distorted (near the water table), the first two
particle moments (mean positions and displacement cova-

riances) are not enough to adequately describe the state of
the plume.

5.3. Macrodispersion

[40] The macrodispersion coefficients D11 and D22 are
illustrated in Figures 8a and 8b, respectively. Figure 8a
shows that for the mean gravity-dominated flow, D11

increases at the early time and then remains almost constant.
For cases 2 and 3, because of the effect of the water table,
D11 starts to decrease from about t = 600 T indicating that
X11 increases at a slower rate. D11 decreases further to
negative values of D11, which correspond to the decrease of
the displacement covariance X11. At late time D11 increases
toward zero (but still being negative), indicating that the rate
of decrease of X11 becomes smaller.
[41] In the transverse direction in case 2, because

hV2(hXti)i � 0, D22 can be calculated using (28):

D22 ¼
Z t

t0

hV 0
2 tð ÞV 0

2 tð Þidt: ð31Þ

Figure 5. Comparison of the mean position and displacement covariances between Monte Carlo results
(MC) and first-order stochastic model results (ME) for the case with a water table at the bottom.

Figure 6. Comparison of (a) the mean position between Monte Carlo results (MC) and first-order
stochastic model results (ME) and (b) displacement covariances between MC, ME using equation (24)
and ME using Dagan’s expression, i.e., equation (27), for the saturated-unsaturated flow.
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To explore the behavior of X22 near the water table
boundary, we consider an elapsed time tp = 1450 T which
is 100 T before the mean particle position reaches the
boundary. The transverse Lagrangian velocity covariance
Cu2u2

(t, tp) is shown as the dashed curve in Figure 9. The
dispersion coefficient D22(tp) in fact is the integration of the
dashed curve from initial time t = 0.0 to t = tp (the highest
peak on the dashed curve). It is obvious that D22 is negative,
which means that X22 is decreasing near the water table
boundary. In contrast, for the case of mean gravity-domi-
nated flow, the dispersion coefficient D22(tp), which is the
integration of the solid curve in Figure 9 from t = 0 to tp (the
highest peak on the solid curve), is positive. That is, for
mean gravity-dominated flow X22 is still increasing near the
boundary.
[42] It is noteworthy that for both cases 1 and 2, D22 = 0

at the lower boundary. This could be easily explained if we
realize that the transverse velocity variance at the lower
boundary is zero. In fact, at the lower boundary, since the
deterministic total head is the same along the boundary, the
transverse velocity perturbation V2

0 � 0; thus the variance of
the transverse velocity on the lower boundary is zero and so
is the transverse velocity covariance between any boundary
point tp and points on the particle path therefore from (31)
D22(tp) = 0. This implies that at the lower boundary the

decreasing X22 reaches its minimum for case 2 and that the
increasing X22 reaches its maximum for case 1.

6. Summary and Conclusions

[43] In this paper, we presented a general approach to
predict spreading of nonreactive solute in transient nonsta-
tionary flows in bounded, heterogeneous unsaturated-satu-
rated media. The Eulerian transient mean velocity and
velocity covariance may be obtained using the algorithm
developed by Zhang and Lu [2002] and converted to
Lagrangian mean velocity and covariance. Using a first-
order approximation, the moments of the particle trajectory
are related to the Lagrangian velocity field. We derived an
expression for the displacement covariance tensor Xij(t) in
terms of the initial displacement covariance at t = t0, the
Lagrangian velocity covariance at the mean position hXti,
and the state transition matrix �(t, t), the last of which is the
derivative of the Lagrangian mean velocity at hXti with
respect to the particle path. In the case that the flow field is
stationary and unidirectional, the state transition matrix
�(t, t) equals the identical matrix and our expression
reduced to the well-known expression of Dagan [1984].
For the nonstationary but unidirectional flow, �(t, t) is an
exponential matrix function and our expression reduced to

Figure 7. Mixed displacement covariances X12 for three
cases.

Figure 8. Macrodispersion coefficients D11 and D22 for three cases.

Figure 9. Transverse Lagrangian velocity covariances
between points along the mean particle path and a reference
point close to the bottom boundary for cases 1 and 2.
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those of Butera and Tanda [1999] and Sun and Zhang
[2000]. In general, �(t, t) has to be solved numerically. The
mean trajectory and displacement covariance are then
evaluated through numerical integrations. The macrodisper-
sion coefficient Dij can also be evaluated numerically.
[44] The stochastic Lagrangian transport model devel-

oped in the current study is in spirit similar to that of
Indelman and Rubin [1996] in the way of handling the
effects of mean flow nonuniformity on solute transport.
However, our work presents an improvement over the latter
in the following aspects: (1) Indelman and Rubin’s main
result [Indelman and Rubin, 1996, equation (16)] seems to
be only valid for weak mean flow nonuniformity while our
model does not have this restriction; (2) our study inves-
tigated transport in coupled unsaturated and saturated flow
where the mean flow direction and magnitude may vary
significantly in space, while they only evaluated the special
case of unidirectional mean flow. Our work is different from
other previous studies on transport in nonuniform flows
[Butera and Tanda, 1999; Sun and Zhang, 2000; Destouni
et al., 2001] in that the latter are all concerned with the
special case of unidirectional mean flows.
[45] We designed three cases to examine the validity of

the first-order stochastic transport model. Monte Carlo
simulations have been conducted for all cases, and the
sample velocity fields from Monte Carlo simulations are
used as input to the transport model. It is shown that the
model results are in good agreement with those of Monte
Carlo simulations. The validity of the transport model
was also verified by comparing its results with those from
the existing models for the cases of mean gravity-domi-
nated flow and the saturated flow with a water table
boundary.

Appendix A

[46] Consider the homogeneous system of (17):

dX0
t

dt
¼ B tð ÞX0

t ðA1Þ

with initial data X0
t = X0

t0
. The fundamental matrix (or state

transition matrix) �(t, t0) corresponding to (A1) satisfies

d� t; t0ð Þ
dt

¼ B tð Þ� t; t0ð Þ ðA2Þ

with initial condition �(t0, t0) = E, the identity matrix. The
state transition matrix has several important properties
including

� t2; t0ð Þ ¼ � t2; t1ð Þ� t1; t0ð Þ ðA3Þ

and

� t1; t0ð Þ½ ��1¼ � t0; t1ð Þ: ðA4Þ

The transition matrix can be thought of as a map which
takes the initial data to the solution of (A1):

X0
t ¼ � t; t0ð ÞX0

t0
: ðA5Þ

For the original equation (17), assuming that its solution can
be written as

X0
t ¼ � t; t0ð Þc tð Þ; ðA6Þ

substituting (A6) into (17) and using (A2), one obtains

dc tð Þ
dt

¼ � t; t0ð Þ½ ��1
V0 hXtið Þ; ðA7Þ

which has the solution

c tð Þ ¼ c t0ð Þ þ
Z t

t0

� t0; tð ÞV0 hXtið Þdt: ðA8Þ

Because c(t0) = X0
t0
, substituting (A8) into (A6) immediately

leads to (18):

X0
t ¼ � t; t0ð ÞX0

0 þ
Z t

t0

� t; tð ÞV0 hXtið Þdt: ðA9Þ
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